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Large language models (LLMs) have rapidly become embedded within
academic and commercial spaces as they achieve greater precision and
accuracy in tasks such as natural language processing and code synthesis.
The specific patterns for interaction with an LLM system can have a direct
effect on the quality of the system's output. This work examines multiple
models for interacting with a generative artificial intelligence (GAI) system
built upon LLMs across multiple dimensions. This work explores the
frequency of interaction (one-shot vs few-shot) as well as the impacts of
prompt patterning on the output of Verilog code synthesized from GAI
systems. Implementation code is generated and the feasibility of adapting
LLMs to each form of coding is assessed to frame discussion over where
LLM backed GAI tools fit into the circuit design landscape and design
automation pipelines, as well as what barriers must be overcome for
these tools to be applicable to domains in which they currently struggle.

STATEMENT OF PROBLEM

BACKGROUND

Three distinct phases of methods were needed for this work. Each of
these phases was repeated for one of three LLM applications. The models
of Bard, GenV, and CodeGen were evaluated in this study.

A. Specification Design

Building on prior works, we utilize the same problem set presented by
Thakur et al. [7]. Each specification is repeated either from the HDLBits
website (where Thakur et al. gathered their problems from) [4] verbatim
or from the specifications utilized in the previous work.

B. Prompting

Prompts were created from the prompt patterns enumerated by White et
al. [8]. These prompts identified the tasks as generating Verilog code to
satisfy the provided specification while providing whatever additional
context the prompt pattern specified.

C. Evaluation

Each generated Verilog code file was compiled with the test benches
provided with the dataset by Thakur et al. Each prompt for each pattern
was assessed based on the percentage of test cases the design under test
(DUT) passed. A solution which failed to compile was evaluated with an
accuracy score of "0.”

D. Execution

For the case of Bard, the prompting was conducted through their web
portal as no formal API access currently exists [3]. For the other models,
specifically “fine-tuned-codegen-2B-Verilog” for GenV and “codegen2-
1B” for CodeGen, the latest version was downloaded from HuggingFace
and queried using the suggested query methods.

METHODS

Initial experiments have demonstrated dramatic differences in the results
of different models at the high level. Bard produces code which is more
accurate as measured by test coverage than GenV, and GenV produced
code more accurate than CodeGen. As a matter of fact, the CodeGen
model produced zero non-trivial programs which were syntactically
correct Verilog code. The comparison of the accuracy of Bard and GenV is
visualized in the figure below. The accuracy of the generated solution for
each pattern and problem pair is shaded to the degree of accuracy (darker
is more accurate). Problems are sorted from problems Bard produced the
most passing test cases for to the least passing test cases left-to-right.
Patterns are sorted similarly from top-to-bottom.

The lack of a clearly similar shape to the data from the left figure to
the right begins to suggest that the patterns of prompting the GAI system
which are most effective may change from system to system. In other
words, the transferability of prompt pattern paradigms my be limited.
Numerous factors could influence and change this effect, from the form of
training data to the preprocessing and tokenization of the system, and
further study on the transferability of prompt patterns will be necessary
to more explicitly determine the limitations they pose.

CodeGen produced several intriguing results which, while not being
Verilog code and therefore unrepresented in the data, are worthy of note.
Multiple proprietary copyright statements were produced from
“Wintermute Engine” to “김동현 ” and “The Intel Corporation.”
Furthermore, a wide array of languages were present in the output of
CodeGen including Swift, C#, Java, C++, C, Python, and Ruby. Similar to the
Verilog code generated, it was rarely syntactically correct.

RESULTS CONCLUSIONS

Some initial generalizations about the applicability of current state-of-the-
art generative AI tools can be made:

1. Task difficulty is a major predictor of accuracy, but not an exact one.
This can lead to uncertainty in generated output as even “simple”
solutions cannot be assumed to be done correctly by automated GAI
systems.

2. GAI systems lack a more generalized training set for RTL and Verilog
code [7], requiring domain expertise to fine-tune to any degree of
quality. The difference in accuracy between GenV and CodeGen is a
clear demonstration of this fact.

3. At present, organizations wishing to utilize GAI for solving novel
problems in circuit design automation must either invest heavily into
model fine-tuning and specialization or look at other levels of
interaction below the RTL level.

Future work will be qualitatively analyzing the generated code to
determine to what degree it could be modified by a human designer and
to what degree this generated code is helpful in the design process.
Furthermore, additional models will be evaluated to determine the
transferability of these findings to code-generating GAI in general.
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LLMs are systems constructed from a multitude of transformers that
function as a predictor of the next token given a specific prompt. The
practice, known as auto-regression, takes as input some prompt, often
text, and breaks the prompt into a series of tokens. These tokens are
sequences of characters that may correspond to words, short phrases,
symbols, or other small pieces of information. The LLM then takes the
steam of tokens and predicts the next token in the sequence [5]. A
multitude of applications have been built upon this technology, and one of
the questions that arise is: how effective are these tools at generating
code?

General purpose LLM systems, such as Bard [3] and ChatGPT [2] as
well as purpose-built applications for code completion [6] and specifically
Verilog code completion [7], are all capable of generating Verilog code as
output. However, "LLMs have limited abilities in comprehending complex
logic and reasoning tasks, often experiencing confusion or making errors
in intricate contexts" [1], raising the question of how most effectively to
represent that context to generate the desired output. The templating of
prompts provided to an LLM has been referred to as "prompt patterning"
[8]. A unique challenge posed by interacting with LLMs using prompt
patterns is that "LLMs [are] sensitive to prompts, especially adversarial
prompts, which trigger new evaluations and algorithms to improve its
robustness" [1]. As a result, determining the efficacy of specific prompts
will empower users of LLM systems to leverage the maximum power
contained within these tools.

Prior works have centered on determining the raw performance of
LLMs. The problems are framed as AI problems and the accuracy and loss
are the most important metrics. While the accuracy of the system is
undoubtedly important, determining which prompt, or in other words
which version of a problem specification, is the most effective has not
received the same breadth of study. One foundational work by Thakur et
al. demonstrates that performing fine-tuning on a relevant LLM can
increase answer accuracy from 1% to 27%. The authors mention though
that "a better prompt might yield a correct result. This indicates the
importance of creating the best prompt" [7].

This work, in contrast to many other works which seek to answer
which is most important between two of the three options: prompt,
pattern, and model, seeks to answer what impact each of the three have
on each other.
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